Nvidia GPU Comparison List

A list of popular NVIDIA Tesla, Quadro and GeForce GPUs for deep learning and 3D rendering, ranked by performance.

GPU Comparison Chart

from fastest to slowest based on FP32 performance.

FP32 Deep Learning Memory Memory Bandwidth
DEFINITION Single precision perf. (TFLOPS) Tensor perf. (TFLOPS) GPU memory (GB) GPU memory bandwidth (GB/s)
GPU List
Nvidia RTX A6000 38.7 310 48  768 GB/s
Nvidia RTX 3090 35.5 n/s 24  936 GB/s
Nvidia RTX A5000 27.8 222 24 768  GB/s
Nvidia RTX A4000 19.2 153 16  448 GB/s
Quadro RTX 8000 16.3 130 48  672 GB/s
Titan RTX 16.3 130 24  672 GB/s
Tesla V100 (PCIe) 1 14 112 16/32  900 GB/s
GeForce RTX 2080 Ti 13.5 n/s 11  616 GB/s
GeForce GTX 1080 Ti 11.3 11  484 GB/s
Tesla P100 (PCIe) 9.5 12/16  732 GB/s
GeForce GTX 1080 8.9 8  320 GB/s
Tesla M60* 2 4.8 8  160 GB/s
Tesla K80* 3 4.1 12  240 GB/s

 

1 AWS P3 Instance
2 AWS G3 instance
3 AWS P2 Instance
* (single GPU)

Octanebench Benchmark

OctaneBench is a popular program that uses Octane Render to benchmark GPU rendering performance.

OctaneBench Score
Graphics Card OctaneBench® 4.00 Score
GeForce RTX 3090 656 (2020.1)
Quadro RTX A6000 631 (2020.1)
Quadro RTX A5000 592 (2020.1)
Tesla V100 (PCIe) 354
Quadro RTX 8000 319
Quadro RTX 6000 304
GeForce RTX 2080 Ti 302
Quadro RTX 5000 245
GeForce GTX 1080 Ti 216
Quadro P6000 192
Tesla P100 (PCIe) 237
GeForce GTX 1080 149
Quadro P5000 139

 

Results are taken from official OctaneBench website.

Need a GPU machine for your research/project?

Whether it’s for deep learning, or rendering… You can affordably rent a cloud GPU server from us. Contact us if you can’t find the configuration you’re looking for, or if you’re unsure about which GPU/server to get.